A five dimensional implementation of the flamelet generated manifolds technique for gas turbine application
نویسندگان
چکیده
In the present paper the Flamelet-Generated Manifold (FGM) chemistry reduction method is implemented and extended for the inclusion of all the features that are typically observed in stationary gas-turbine combustion. These consist of stratification effects, heat loss and turbulence. The latter is included by coupling FGM with the Reynolds Averaged Navier Stokes (RANS) model. Three control variables are included for the chemistry representation: the reaction evolution is described by the reaction progress variable, the heat loss is described by the enthalpy and the stratification effect is expressed by the mixture fraction. The interaction between chemistry and turbulence is considered through a presumed probability density function (PDF) approach, which is considered for progress variable and mixture fraction. This results in two extra control variables: progress variable variance and mixture fraction variance. The resulting manifold is five-dimensional, in which the dimensions are progress variable, enthalpy, mixture fraction, progress variable variance and mixture fraction variance. In addition, a highly turbulent and swirling flame in a gas turbine model combustor is computed, in order to test the 5-D FGM implementation. The use of FGM as a combustion model shows that combustion features at gas turbine conditions can be satisfactorily reproduced with a reasonable computational effort. The implemented combustion model retains most of the physical accuracy of a detailed simulation while drastically reducing its computational time, paving the way for new developments of alternative fuel usage in a cleaner and more efficient combustion.
منابع مشابه
Modeling and Process Analysis of a Biomass Gasifier-Molten Carbonate Fuel Cell-Gas Turbine-Steam Turbine Cycle as a Green Hybrid Power Generator
Fuel cell-based hybrid cycles that include conventional power generators have been created to modify energy performance and output power. In the present paper, integrated biomass gasification (IBG)-molten carbonate fuel cell (MCFC)-gas turbine (GT) and steam turbine (ST) combined power cycle is introduced as an innovative technique in terms of sustainable energy. In addition, biomass gasificati...
متن کاملNovel Auxiliary Power Unit Configuration Based On Fuel Cell Technology for Civil Aircraft Application
This paper proposes novel Fuel Cell Auxiliary Power Unit (FCAPU) for J150+ aircraft application. The primary version of APU in J150+ aircraft is a gas turbine Auxiliary Power Unit (APU) which is based on gas turbine jet engine but in the suggested FCAPU, the generated electrical power is achieved from chemical energy with higher efficiency. The Solid Oxide Fuel Cell (SOFC) technology is used to...
متن کاملOptimization of turbine blade cooling with the aim of overall turbine performance enhancement
In the current work, different methods for optimization of turbine blade internal cooling are investigated, to achieve higher cyclic efficiency and output power for a typical gas turbine. A simple two-dimensional model of C3X blade is simulated and validated with available experimental data. The optimization process is performed on this model with two different methods. The first method is ...
متن کاملOptimization of turbine blade cooling with the aim of overall turbine performance enhancement
In the current work, different methods for optimization of turbine blade internal cooling are investigated, to achieve higher cyclic efficiency and output power for a typical gas turbine. A simple two-dimensional model of C3X blade is simulated and validated with available experimental data. The optimization process is performed on this model with two different methods. The first method is ...
متن کاملImprovement of simple and regenerative gas turbine using simple and ejector-absorption refrigeration
The exhaust gases of gas turbine power plant carry a significant amount of thermal energy that is usually expelled to the atmosphere this causes a reduction in net work and efficiency of gas turbine. On the other hand, the generated power and efficiency of gas turbine plants depend largely on the temperature of the inlet air, So that they both increase as the inlet air temperature decreases. Th...
متن کامل